
Future of Software Engineering

Kevin Sullivan
University of Virginia



Why is it Hard?

• Demands creativity, knowledge, structure 
• Very few natural, order-creating constraints
• Hard to reason about complex logical structures
• Complex, multi-objective, human fitness functions
• Incomplete information: design, environment, fitness
• Decentralized evolution of design and environment
• Delayed discovery of weaknesses, adverse interactions
• Complex connection of design structure to evolvability
• SE cookbooky/heuristic: what is science of SW design?



What’s Currently Infeasible?

• Engineering SW risk-return characteristics
• Engineering of bio-scale software systems

• “…the limits of software engineering have been clear now for two
decades. The biggest programs anyone can build are about ten million 
lines of code. A real biological object — a creature, an ecosystem, a 
brain — is something with the same complexity as ten billion lines of 
code. And how do we get there?” –Jordan Pollack

• E.g., 10 x 10 x 10 x 10 design hierarchy of powerpoint-scale modules

• Reasoning about critical, specified properties



Radical Directions

• Strategic software design: value-based science of design
– Economics (utility, capital market value—options value of modularity)
– Biology/CAS (evolution on fitness landscapes—parameter-based design)
– Social Sciences (cognitive costs, sociology—e.g., participatory design)
– Humanities? (aesthetic, cultural, historical, ethical measures of value) 

• Layered, property-oriented design of design rules 
– Among other things, necessary for systematic COTS integration—e.g., POP
– Terrific target for use of formal methods—e.g., design of COM
– Beyond connector-component ontology for foundational software design
– Analog: rules of physics, then chemistry, then biology, then ecology, …

• Lightweight architectural aspects for emerging noosphere
– Anticipating “software in everything”
– How to understand, track, manage vastly more complex software
– E.g., arbitrary running objects expose web interfaces



Challenge

• Understand the conditions necessary to transform 
the software industry to one that looks more like 
the PC industry: firms compete over standardized 
components that can be integrated into systems 
with specified cost and performance properties

• Reevaluate design of the emerging global grid 
from ground up from a property-based perspective 
including focus on dependability characteristics 
(bandwidth/throughput getting cheap, now what?)



Designing an R&D Portfolio

• Emphasize need for theory of software design having 
both intellectual depth and descriptive & prescriptive 
potential (not just the scientific method applied to the 
testing of ad hoc ideas)

• Increase emphasis on intellectually clear & compelling
advances (e.g., bio-scale software, breakthrough models 
of modularity & evolution, restructuring SW industry...)

• Treat R&D as an investment activity: projects are a 
portfolio of options (to abandon, expand in phases); 
requires dynamic investment management approach; 
need to coordinate some to use options most effectively


	Future of Software Engineering
	Why is it Hard?
	What’s Currently Infeasible?
	Radical Directions
	Challenge
	Designing an R&D Portfolio

